Quotient (universal algebra) - definição. O que é Quotient (universal algebra). Significado, conceito
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

O que (quem) é Quotient (universal algebra) - definição

CONSTRUCTION IN UNIVERSAL ALGEBRA
Congruence lattice; Compatible operation; Maltsev variety; Maltsev conditions; Quotient algebra (universal algebra)

Quotient (universal algebra)         
In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation.
Universal algebra         
FIELD OF MATHEMATICS CONCERNING THE THEORY OF ALGEBRAIC STRUCTURES
Universal Algebra; Equational theory; General algebra; Equational reasoning; History of universal algebra
<logic> The model theory of first-order {equational logic}. (1997-02-25)
Universal algebra         
FIELD OF MATHEMATICS CONCERNING THE THEORY OF ALGEBRAIC STRUCTURES
Universal Algebra; Equational theory; General algebra; Equational reasoning; History of universal algebra
Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures.

Wikipédia

Quotient (universal algebra)

In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.

The idea of the quotient algebra abstracts into one common notion the quotient structure of quotient rings of ring theory, quotient groups of group theory, the quotient spaces of linear algebra and the quotient modules of representation theory into a common framework.